Industrial Computed Tomography

Tool for Scientific Research and Technological Development

EQUIPMENT

QUALITY TEST

LABORMETDUE

1. Labormet Due Srl – What we do

We are specialized in the field of scientific instruments for **laboratory** and **quality control**:

- Instruments and related consumables for the control of metals, polymers, ceramics and composites
- □ Characterization and measurement techniques: metallography, optical and electronic microscopy, image analysis, physical and mechanical tests, environmental simulation, chemical analysis, metrology in research, production and quality control

We provide services by means of our Laboratory of Metrology and Industrial X-Ray Computed Tomography

- Failure Analysis
- 3D metrology
- Reverse Engineering
- Defect Analysis

- Electronics inspection
- Assembly Verification
- > Weld Quality Analysis
- Product contamination
- Food Product Inspection
- Packaging Inspection
- Cultural Heritage
- e molto altro

2. Labormet Due Srl - Certifications

Original cycle start date.	10 October 201
Expiry date of previous cycle:	09 October 201
Certification / Recertification Audit date:	05 September 201
Certification / Recertification cycle start date:	09 October 201

Subject to the continued satisfactory operation of the organization's Management System, this certificate expires on: 09 October 2022

Certificate No. - Version: IT270431-1

Revision date: 09 October 2019

ANDREA FILIPPI- Local Technical Manage

Certification body address: Bureau Veritas Italia 8, p.A., Viale Monza, 347 - 20126 Milano, Italia

Further clainfications regarding the scope of this certificate and the applicability of the management system requirements may be obtained by certailing the organization, to check this calles will be taken will be taken that are the score of the score and the score of the sco

BUREAU 2 Certificatio Veritas ureau m

Certificate of Approval This is to certify that the Quality Management System of:

LABORMET DUE SRL

CORSO ORBASSANO 402/18-10137 TORINO (TO) - Italy

has been audited in accordance with the requirements of EN 9104-001:2013 by Bureau Veritas Certification and conforms to the following Quality Management Systems Standards detailed below

Standards

BS EN ISO 9001:2015 EN 9100 : 2018 (Technically equivalent to AS9100D) Scope of certification

Metrological and defectological analysis services for ASD Sector

Certification Structure: Single Site

This certificate forms part of the approval identified by certificate number:

Original ASCS Approval: 2 Certificate Issue Date: 2 Certificate Expiry Date: 2(

21-December-2020 21-December-2020 20-December-2023

Trevor William Douce Authorised Signatory

Further clarifications regarding the scope of this certificate and the applicability of the management system requirements may be obtained by consulting the organisation. Certification Body: Bureau Veritas Certification Holding SAS-UK Branch 3th Floor, - 1616 - 17-1

UKAS

SYSTEMS

0008

IT302717

aerospace sector certification

66 Prescot Street, London, E1 8HG, United Kingdom

3

3. Our industrial CT Systems: Phoenix v|tome|x series

Waygate tech. Phoenix v|tome|x m

Microfocus X-Ray Tube	Open & Directional
Max tube voltage	300 kV
Max power	500 W
Focal Spot	4 μm
Detector type & dimensions	DXR 250 GE 300 x 300 mm
Diode dimension - pixel	200 µm
Filament & Target	Tungsten
Frame Rate	30 fps
Grayscale	16 Bit
Window	Berillium
Max Sample Sizes & Weight	300 x 600 mm 50 Kg

Waygate tech. Phoenix v|tome|x c Scatter|correct / HS

Minifocus X-Ray Tube	Closed
Max tube voltage	450 kV
Max power	700 W / 1500 W
Focal Spot	0,4 mm (700 W) / 1,0 mm (1500 W)
Detector type & dimensions	GE dynamic 41 200, 410x410 mm, 2036x2036 pixels
Diode dimension - pixel	200 µm
Filament & Target	Tungsten
Frame Rate	30 fps
Grayscale	16 Bit
Window	Berillium

3. Principles and System description

4. Main controls, data post processing and measurements

ABORMETDUE EQUIPMENT

5. Main advantages of industrial CT in dimensional metrology

Disadvantages of Conventional Systems

Dedicated calibers	Sizing of samples for internal control	
Optical CMMs available	Use of multiple tools for complete control	
Caliper Calibration	Possibili deformazioni durante lo staffaggio	
CMM Calibration	Impossibility of comparison after assembly	
Probe certification		

- Low cost of clamping
- No deformation
- Simultaneous control of multiple samples
- Multiple types of control in one cycle

CT Scanner metrological calibration

- System calibration in the sample scan position
- **Quick**, less than 5 minutes

Case 1: Heat Exchanger

Water-oil heat exchanger redesigned and manufactured by SLM in AlSi10Mg

Exchange of 12 kW and compared to its conventional equivalent, it takes up 1/5 of the space. Walls of 0.4 mm thickness

The weight is 85% lower than the analogous traditional model.

1,5 kg

POLITECNICO Di torino

> DIMEAS Dipartimento di Ingegneria Meccanica e Aerospaziale

Case 2: Condensing Heat Exchanger

Prototype of an innovative condensing heat exchanger (CHX) which must operate in microgravity and which would perform the function of recovering water directly from the air present in the environment inhabited, on board the space module, or from possible growth chambers of any plants that would produce food for the crew

□ AM technology: Selective Laser Melting

 $\circ~$ Print Sharp 250 (Prima Additive)

□ Material: AlSi10Mg

Courtesy of Prof. Paolo Maggiore (DIMEAS), Polytechnic of Turin.

Case 3: Joint brazing analysis

Courtesy of Prof. Valentina Casalegno (DISAT), Polytechnic of Turin.

- Solder was put on the surfaces of the Lpiece and on the head of the pin inserted into the foam
- The brazing agent is based on silicon and molybdenum

Case 4: µCT for multiscale modeling of fiber-reinforced polymers for CAE

Sectional representation of speed and tension during the injection process in a plate with constant thickness

VGStudio MAX output examples

Case 4: µCT for multiscale modeling of fiber-reinforced polymers for CAE

Courtesy of Mr. Grassini CAE Team Leader of Radici Group

Case 5: lattice structure in 316L stainless steel manufactured in SLM

Purpose: numerical-experimental investigation of correlations between AM process defects and mechanical properties

Octet-truss cellular structure

Specimen with gauge length in lattice structure

Mesh conversion with 15 μm tolerance

Courtesy of Mr. Carraturo (DICAr), University of Pavia.

M. Carraturo et al. *Experimental and Numerical Evaluation of Mechanical Properties of 3D Printed Stainless Steel 316L Lattice Structures*. Department of Civil Engineering and Architecture, University of Pavia.

DICAr

DICAr DI PAVIA

Courtesy of Mr. Carraturo (DICAr), University of Pavia.

M. Carraturo et al. *Experimental and Numerical Evaluation of Mechanical Properties of 3D Printed Stainless Steel 316L Lattice Structures*. Department of Civil Engineering and Architecture, University of Pavia.

Case 5: lattice structure in 316L stainless steel manufactured in SLM

Alternatively, it is possible to compute the tomographic data using special algorithms: immersed boundary

Courtesy of Mr. Carraturo (DICAr), University of Pavia.

M. Carraturo et al. *Experimental and Numerical Evaluation of Mechanical Properties of 3D Printed Stainless Steel 316L Lattice Structures*. Department of Civil Engineering and Architecture, University of Pavia.

Purpose: to evaluate a set of process parameters from a dimensional and defect point of view

MAIN PROCESS PARAMETERS [A]			
Laser powe	r	195 W	
Scan speed		1000 mm/s	
Beam spot size		100 µm	
Layer thickness		20 µm	
Hatching distance		0,05 mm	
Stripe width		5 mm	
Overlap if s	tripes	0,12 mm	
Contour	Laser power	150 W	
	Scan speed	1250 mm/s	
Argon atmosphere		Oxygen content < 0,1 %	

Building platform heating 80°C

EOSINT M 270 Dual-mode system [B] Laser type: Yb-fiber laser, 200 W Variable focus diameter: 100÷500 μm Layer thickness: 20÷100 μm

Processed Material: Hastelloy X powder [A]

 [A] Calignano, F.; Minetola, P. Influence of Process Parameters on the Porosity, Accuracy, Roughness, and Support Structures of Hastelloy X Produced by Laser Powder Bed Fusion. Politecnico di Torino, DIGEP, Materials, 2019.
[B] EOS M 270 technical sheet. <u>https://dmlstechnology.com/images/pdf/EOSINT_M_270.pdf</u>

| POLITECNICO | DI TORINO

[C] ISO/ASTM 52902:2019(E). Additive manufacturing - Test artifacts - Geometric capability assessment of additive manufacturing systems

ΨĽ

Edges

Edgel

Height 10

Height

Note: dimensione voxel 20 µm

POLITECNICO DI TORINO

Integrated Additive Manufacturing@PoliTo

Porosity example

Porosity Values [%]

THANK YOU FOR YOUR ATTENTION

Edited by **Paolo Fresi** Industrial CT Specialist & Quality Manager

LABORMET DUE Srl Corso Orbassano 402/18, 10137 Torino

C.E.O. RICCARDO GIRELLI Phone 011 740905 r.girelli@labormetdue.it info@labormetdue.it www.labormetdue.it

